NƠI LÀM VIỆC
Meta và Đại học New York, Hoa Kỳ
TÓM TẮT CÔNG TRÌNH ĐẠT GIẢI
Nghiên cứu tiên phong về mạng nơ-ron tích chập cho thị giác máy tính
Giáo sư Yann LeCun được ghi nhận bởi công trình tiên phong của ông trong việc phát triển các mạng nơ-ron tích chập (CNNs), một mô hình quan trọng trong việc phát triển công nghệ nhận diện hình ảnh và học sâu. Công trình của ông về CNNs vào cuối những năm 1980 đã đặt nền móng cho quá trình học tự động các đặc trưng hình ảnh phân cấp, điều này rất quan trọng trong các tác vụ như phát hiện đối tượng và nhận diện khuôn mặt. Ông còn có nhưng đóng góp quan trọng trong phương pháp học không giám sát, các mô hình năng lượng và các kỹ thuật lan truyền ngược hiệu quả.
QUY MÔ TÁC ĐỘNG
Những đổi mới của Giáo sư LeCun đã thúc đẩy sự đột phá trong các ngành công nghiệp sử dụng công nghệ xử lý hình ảnh, từ chẩn đoán y tế đến lái xe tự động. CNNs hiện đã trở thành tiêu chuẩn trong các ứng dụng trí tuệ nhân tạo mà hàng tỷ người sử dụng mỗi ngày, đóng vai trò trung tâm trong sự phát triển của các công nghệ như nhận diện khuôn mặt và xử lý hình ảnh y tế.
THAY ĐỔI CÓ Ý NGHĨA
Công trình của Giáo sư LeCun đã thay đổi căn bản cách mà máy móc diễn giải dữ liệu hình ảnh, cho phép các hệ thống trở nên thông minh và đáp ứng tốt hơn. Những đóng góp của ông đã giúp các hệ thống trí tuệ nhân tạo làm việc hiệu quả hơn trong các nhiệm vụ như chăm sóc y tế cá nhân hóa, cải thiện an toàn bảo mật, nâng cao hiệu quả tự động hóa, từ đó mang lại lợi ích cho xã hội trên phạm vi toàn cầu.